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Abstract 

Aligned with the George B. Moody PhysioNet 

Challenge 2023, we aim to create an open-source 

algorithm to predict coma recovery 3-6 months following 

return of spontaneous circulation after cardiac arrest. Our 

algorithm employs multimodal biosignals from a dataset 

spanning five U.S. and European hospitals. The 

preprocessing pipeline enhances signal quality through 

bandpass and notch filtering, resampling, and z-score 

normalization. EEG channels are organized into 21 

bipolar montages and standardized ECG lead selection. 

We extract 362 EEG expert-based features, encompassing 

temporal, spectral, time-frequency, and connectivity 

metrics. ECG features include 16 heart rate variability 

indices, features indicating atrial tachyarrhythmia, and 

shockable rhythms. Our classification approach involves 

initial positional encoding, followed by an ensemble of 

CatBoost combined with stacked ensembles with diverse 

base learners in the first layer. To improve robustness and 

reduce bias, our ensemble strategy employs various cross-

validation committees, including confounder-isolating 

cross-validation. Our proposed predictive framework 

demonstrates an average challenge score mechanism of 

0.651 ± 0.077 through 5-fold cross-validation. Our 

"AIrhythm" scored 0.792 on the hidden test set and 

officially ranked 1st in the PhysioNet Challenge 2023. 

 

1. Introduction 

Predicting functional outcomes of comatose cardiac 

arrest patients demands timely, precise, and robust 

approaches that inform clinical decision-making [1]. 

Traditional prognostic approaches, like visual inspection 

of electroencephalography (EEG) by neurophysiologists, 

are limited by subjectivity, risking bias and lack of 

reproducibility [2]. Machine learning (ML) for EEG 

analysis [3], [4] is increasingly utilized, and the 

opportunity exists for simultaneously using ECG cardiac 

telemetry and EEG neurotelemetry to predict functional 

outcomes [5]. 

We sought to utilize longitudinal EEG and ECG 

recordings available in cardiac arrest patients during the 

initial 72 hours following return of spontaneous circulation 

(ROSC) to predict a Cerebral Performance Category 

(CPC) scale dichotomous outcome: "good" (CPC 1-2) or 

"poor" (CPC 3-5). We introduce an ML framework (Figure 

1) for predicting functional outcomes that integrates 

multimodal features, introducing some novel handcrafted 

EEG features, positional encoding via gradient boosting 

trees, confound-isolating cross-validation (CV) strategies, 

and a combination of stacking and boosting ensembles 

(HyperEnsemble). 

 

2. Materials and methods 

The training dataset included 607 adult cardiac arrest 

patients in coma, monitored continuously for hours to days 

with EEG and ECG, as previously described [6]–[8].  

 

2.1. Preprocessing 

EEG and ECG signals were bandpassed (0.1-45 Hz), 

resampled at 125 or 128 Hz, z-score normalized, and 

segmented into non-overlapping 3-minute segments. 

Given ECG lead inconsistencies, we integrated the first 

lead into our framework. We created a range of effective 

EEG channel montages through empirical validation: F3-

C3, C3-P3, F4-C4, C4-P4, Fz-Cz, P3-O1, T5-O1, P4-O2, 

T6-O2, Fp1-Fp2, T3-T4, T5-T6, Fp1-T3, Fp2-T4, T4-O1, 

T3-O2, Fp1-Cz, Fp2-Cz, O1-O2, P3-P4, and Cz-Pz. 

 

2.2. EEG quantitative measures 

Single-lead measures: We extracted 43 features from 

6 EEG channels, C3-P3, C4-P4, Fp1-Fp2, Fz-Cz, T3-T4, 

and Cz-Pz, including various temporal (Hjorth Activity, 

Mobility, and Complexity) and spectral (power below 1Hz 

[9], power ratios of 4-12/12-30Hz, 4-12/8-35Hz, and the 

alpha-to-delta power ratio features. Mean and variance 

were also computed for signal components across varying 

scales through wavelet decomposition, employing 

Daubechies 4 wavelets with level 5. We also extracted the 

interquartile range of the first difference of zero-crossing 
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positions in the raw and the 0.5-4Hz band-passed 

segments. Additionally, spectral features, such as the 

frequency corresponding to the maximal magnitude and 

the variance of the spectrogram, were extracted. 

Furthermore, the mean and standard deviation of the 

instantaneous frequency were extracted, providing insights 

into rhythmic patterns. The framework also incorporates 

the coefficient of Burg's linear regression method to model 

the EEG segment as an autoregressive process to afford a 

window into EEG temporal interdependencies. 

Additionally, the spectral edge frequencies corresponding 

to diverse cumulative power levels (50, 70, 80, 90, and 

95%) were computed. We also extracted seasonal 

autocorrelation at different lags (0.3, 0.8, and 1.5 seconds). 

Connectivity measures: For all 21 EEG channels, we 

derived eigenvalues from the correlation matrix, the EEG 

covariance matrix, and the autocorrelation matrix 

evaluated at lags of 2, 8, and 32 seconds. Furthermore, we 

explored the Phase Locking Value (PLV) to quantify the 

phase synchrony exhibited between pairs of six channels 

mentioned above within 0.5-4 and 16-25 Hz. Additionally, 

we computed relative alpha rhythm power and spectral 

slope for electrode pairings of (Fp1-Fp2, O1-O2) and (Fp1-

T3, Fp2-T4) to examine both frontal-occipital and right-

left hemisphere interactions. 

Frontal EEG measures: Given the role of frontal 

channels in consciousness studies [10], we extracted three 

features from Fp1-T3, Fp2-T4, Fp1-Cz, and Fp2-Cz, 

including 1) the logarithm of the ratio between the average 

power observed within the frequency ranges of 30-47 and 

11-20 Hz; 2) the logarithm of the ratio between the spectral 

energy within 30-42.5 and 6-12 Hz; and 3) the computed 

slope of the power spectral density on a logarithmic scale. 

Temporal dynamics: To model the temporal 

information, two discrete features were calculated at Fz-

Cz: 1) the signature [11] of the reconstructed phase space 

of the EEG signal, utilized to capture interactions of the 

highly oscillatory components and 2) Normalized 

Compression Distance [12] using the Gzip compression to 

model the temporal complexity between the consecutive 

rolling windows. To our knowledge, these two features 

have not been utilized previously for EEG analysis. 

 

2.3. ECG quantitative measures 

Heart Rate Variability (HRV) measures: The first 10 

Figure 1. In the proposed predictive framework, preprocessing (1) and feature extraction (2) from 3-minute windows 

were followed by aggregation and sinusoidal positional encoding (3), wherein quantiles of features were computed at 

every h-hour intervals and aggregated windows were assigned a sinusoidal pattern. Training set construction (4) involved 

conventional and confound-isolating (CI) cross-validation. Finally, HyperEnsemble learning (5) leveraged diverse 

classifiers from data grouped using varying quantiles and h values to generate an averaged final prediction probability. 
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features are HRV measures derived from R-R intervals. 

Two features gauge the occurrences of abrupt R-R interval 

changes exceeding a 50-millisecond threshold, and the 

percentage of these among all R-R intervals. Subsequently, 

we computed SD1, SD2, the ratio SD1/SD2 and SD2/SD1, 

capturing both short- and long-term HRV [13]. Further, we 

extracted the cardiac sympathetic index by relating the 

dimensions of an ellipse defined by SD1 and SD2 and the 

Cardiac Vagal Index by logarithmically transforming the 

product of SD1 and SD2. A modified variation was utilized 

by computing the square of SD1 divided by SD2. Two 

additional features included the squared differences 

between R-R intervals and the ratio of the standard 

deviation to the mean of R-R differences [14]. 

Atrial tachyarrhythmia measures: We also extracted 

three features for identifying atrial tachyarrhythmia: 

AFEvidence, ATEvidence, and OrgIndex [15].  

Shockable measures: We extracted three features 

inspired to identifying shockable rhythms [16]: 1) the 

difference between the maximum and minimum values of 

the band passed (6.5-30 Hz) ECG segment; 2) the 

proportion of time for which the first difference squared 

ECG segment remains below a predefined threshold; and 

3) a measure in which the cumulative sum of the 

normalized power spectrum was first calculated, after 

which bandwidth was computed by discerning frequencies 

at which a given proportion of power is enclosed. 

 

2.4. Static covariates 

Four static variables were used as predictors and carried 

forward across rolling windows, including age, ROSC, 

out-of-hospital cardiac arrest (OHCA), and shockable 

rhythm. Sex and hospitals were considered confounders. 

 

2.5. Classification framework 

Aggregating and positional encoding: For every h-

hour interval (h=5, 6, or 12), the 3-minute sequential 

segments were combined using quantiles (0.88 or 0.89) 

derived from individual feature values. Following the 

aggregation, sinusoidal positional encoding [17] was 

employed and added to feature values to imbue the feature 

vectors with the relative temporal order. 

Constructing training subsets: To build diverse 

training sets for our proposed ensemble learning approach, 

we utilized three distinct CV strategies: 1) Five-fold CV 

generating 5 replicated datasets from the initial training 

data formed by withholding a random 20% subset to 

produce 5 intersecting training subsets; 2) Confounder-

isolating [18] CV (cluster analysis) utilizing k-means 

clustering to group training data based on potential 

confounding variables, namely hospital type and sex, 

which led to three overlapping training subsets from the 

original dataset, where each iteration removed a distinct 

cluster; and (3) Confounder-isolating CV (propensity 

score), a variant employing logistic regression with 

predictors like hospital types and sex to predict outcomes 

then stratifying the population into four non-overlapping 

quantiles of the predicted probabilities and subsequently 

generating four intersecting training subsets by excluding 

a distinct group each time. By constructing these training 

subsets, we aimed to enhance robustness and reduce bias. 

HyperEnsemble learning: Random undersampling 

was used to mitigate class imbalance within each subset, 

with each resulting subset inputted into three ensemble 

classifiers, whose probabilities were averaged to calculate 

final prediction probabilities. The first ensemble classifier 

employed was CatBoost, an ML method based on gradient 

boosting over decision trees [19]. The second ensemble 

was a stacking ensemble, wherein the base learners were a 

multilayer perceptron (MLP) comprising three hidden 

layers of 20 neurons, a support vector machine with a 

linear kernel, a CatBoost, extremely randomized trees, and 

a linear discriminant analysis classifier. The meta-learner 

was an MLP with two hidden layers, each with five 

neurons. The third classifier was another stacking 

ensemble with three CatBoost classifiers as base learners 

and logistic regression as the meta-learner. Apart from the 

base learners themselves, a pivotal distinction between this 

stacking ensemble and the previous ensemble resides in the 

nature of input data being generated by employing distinct 

aggregating time resolutions, i.e., h=5, 6, and 12 hours. 

 

3. Results 

Performance of the proposed framework for two 

variations of CV is shown in Table 1. CVI tested 

patientwise 5-fold CV. CVII, tested CV on data isolated 

from one hospital and 20% of the remaining patients. 
 

Table 1. Results of 5-fold cross-validation. The challenge 

score is the true positive rate at a false positive rate of 0.05. 
 

Metrics CVI CVII Test Set 

Challenge 

Score 
0.691±0.083 0.651±0.077 0.792 

Sensitivity 0.80±0.07 0.78±0.06 NR 

Specificity 0.80±0.08 0.79±0.05 NR 

AUROC 0.89±0.02 0.87±0.02 0.916 

AUPRC 0.93±0.01 0.91±0.02 0.957 

F1 0.80±0.04 0.79±0.03 0.791 

AUPRC, area under the precision-recall curve; AUROC, 

area under the receiver operating characteristic curve. NR, 

not reported by the PhysioNet Challenge 2023. 
 

4. Discussion and conclusion 

We developed an open-source framework for predicting 

the outcomes of comatose cardiac arrest patients. Our 

approach included established and novel EEG and ECG 
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features with positional encoding using non-deep learning 

models. By adapting ensemble learning and implementing 

diverse CV committees, we increased the robustness of our 

framework. The proposed solution focuses on a restricted 

set of EEG channels and features due to the computational 

constraints set by the PhysioNet challenge; a broader range 

of EEG channels and additional features may yield 

improved performance. Future directions include 

evaluating the response of clinicians and surrogates to 

simulated predictions and silent real-time evaluation. 
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